

Laser Safety

Department of Physics

Why?

- Picosecond pulses cause bleeding/latent viewing distortion cause: frequency doubler without AR coatings
- Reflected beam caused vision loss cause: Professor removed eyewear to "see better" while doing an experiment
- Retinal burn from beam off rear laser mirror of YAG laser cause: student with INCORRECT EYEWEAR (rated for OD 4 not required OD 6)
- Blurred vision from reflected exposure Student without eye protection received reflected beam from Ti-Sapphire laser of off plastic tool box lid
- Off-axis beam causes macular burn in left eye scientist bumped mirror mount
- Backscatter from mirror causes haemorrhage and oveal blindspot student aligning laser amplifier caught professor in eye

LASER SAFETY INCIDENTS LEAD TO LAB SHUTDOWNS – Los Alamos, U. Manchester

Q: Can This happen in our department?

Outline

- What is a LASER?
- Summary of laser hazards
- Laser classifications
- Laser-related hazards
 - Non-beam hazards
 - Beam hazards
- Optical protection
 - Maximum permissible exposure, calculating requirements
 - Laser-protective spectacles
- Issues in practical laser safety
 - Particular hazards (Ti:sapphire)
 - Past incidents
 - Minimizing risk: practical rules and tips

What is a LASER?

L light

A amplification by

S stimulated

E emission of

R radiation

Inside a laser

- the atomic process known as stimulated emission generates electromagnetic (EM) radiation
- this radiation is amplified using feedback in an optical cavity
- lasers used stimulated emission to amplify EM energy
- which becomes very intense
- the intensity of laser light is therefore a hazard

Note that this radiation should not be confused with ionizing radiation or radioactive materials

What is a LASER?

Lasers produces an intense highly directional beam of light

What is a LASER?

- Laser energy can be directed, reflected or focused on an object
- Partially absorbed by materials it comes in contact with
- Laser power is important to consider this will help us assess the danger

Summary of laser hazards

High Voltage, current, power (separate training required)

- Chemical Hazards (MSDS separate training required)
 - F2 , Cl2 gas
 - Explosion hazards
 - Cryogenic hazards

- Concentrated light (primary focus of laser safety)
 - Fire hazard
 - Skin, Clothing EYE HAZARD

Marine labs?

Outline

- What is a LASER?
- Summary of laser hazards
- Laser classifications
- Laser-related hazards
 - Non-beam hazards
 - Beam hazards
- Optical protection
 - Maximum permissible exposure, calculating requirements
 - Laser-protective spectacles
- Issues in practical laser safety
 - Particular hazards (Ti:sapphire)
 - Past incidents
 - Minimizing risk: practical rules and tips

Laser classification

Maximum Permissible Exposure (MPE)

Class 1

- Safe to the eye under all conditions (e.g. at 600 nm emits < 0.39 mW)
- Includes high-power lasers that are completely encased
 - Examples: CD-ROM players/drives

Class 1M

 Safe except when passed through focusing optics (i.e. naturally large area or diverging beams)

Class 2

- Safe within "blink response" time of the eye (e.g 0.25 second or less)
- Intentional extended viewing, however, is considered hazardous
- Must also be visible region of EM spectrum (400-700 nm)
- Limited to 1 mW continuous wave MPE for most lasers
 - Example: supermarket scanners

Class 2M

Safe except when passed through optics system (i.e. focusing)

Laser classification

Class 3R

- Considered safe if handled carefully
- Requires restricted beam viewing conditions
- Exceeds MPE, but unlikely to cause serious injury
- Visible continuous lasers in Class 3R are limited to 5 mW
 - Examples: <5 mW Laser pointers

Class 3B

- A Class 3B laser is hazardous if the eye is exposed directly
- Diffuse reflections are not harmful
- Continuous lasers for 315 nm to far infrared wavelength are limited to 0.5 W
- For pulsed lasers between 400 and 700 nm, the limit is 30 mJ
- Protective eyewear is typically required
 - Example CW laser for photoluminescence

Laser classification

Class 4

- Very high average beam powers for CW lasers or pulse energies for pulsed and ultrashort lasers
- Can burn skin
- Even diffuse reflections are a hazard to the eye
- Direct viewing will mostly result in devastating and permanent eye damage
- Stringent control measures are required
- Examples:

Verdi (532 nm, 5W)

Ti:Sapphire oscillator (modelocked, <100 fs, ~800 nm)

CW/Q-switched Nd:YAG (1064 nm)

Amplified Spontaneous Emission

.... and many more!

Laser classification: other considerations

- Other Considerations for continuous wave (CW) lasers
 - the average power output (Watts)
 - limiting exposure time inherent in the design

For pulsed lasers

- the total energy per pulse (Joules)
- pulse duration
- pulse repetition frequency
- emergent beam radiant exposure are considered

Ultrashort pulsed lasers

- <10 fs very short pulses, wide band emission
- <1 fs or continuum generation no protection available

Outline

- What is a LASER?
- Summary of laser hazards
- Laser classifications
- Laser-related hazards
 - Non-beam hazards
 - Beam hazards
- Optical protection
 - Maximum permissible exposure, calculating requirements
 - Laser-protective spectacles
- Issues in practical laser safety
 - Particular hazards (Ti:sapphire)
 - Past incidents
 - Minimizing risk: practical rules and tips

High Voltage

- Capacitor discharges
- High voltage electrocution
- Sparks fire hazard

- Only "qualified personnel" should open box
- At least one graduate-student death per year due to laser High Voltage
- Many lasers use high voltage to generate sufficient laser action, but require water cooling to dissipate heat.
- This balance can be <u>lethal</u> to inexperienced people opening laser equipment

- Laser dyes can be potentially lethal too
- Toxic, e.g. almost all
- Carcinogenic, e.g. RHODAMINE 6G

Requires Knowing:

- Materials Safety Datasheets
- Proper storage, handling and waste management
- Requires additional training

- Some high-power lasers are cryogenically cooled
- Frostbite hazards from LN₂ and LHe
- Asphyxiation hazard from LN₂
- Training required for cryogenics

- Radiation absorbed by tissue
- Raising the surface or interior temperature
- Potential alteration or deformation of tissue e.g. laser eye surgery
- High intensity → Tissue (eye and skin) damage
- Laser pulses can also set fire to flammable lab supplies

Skin has a dead layer that helps protect it against moderate intensity beams

High intensity can oblate the skin e.g. laser welding, cutting tools

Wavelength dependent skin penetration

- UV short penetration depth
- VIS, NIR and MIR moderate penetration
- FIR negligible

UV risks – skin cancer
(200 to 280 nm)
Photon energy is sufficient to
cause photochemistry
and therefore cell mutation

Visible-NIR (400-1400 nm)

- Eye is designed to focus visible light
- An eye focused on the horizon or a far-away object will optimally focus a collimated beam

Near UV (315-390 nm)

- Damage to cornea and lens
- light doesn't penetrate the vitreous humor, so no damage to retina

Mid-infrared (>1400 nm) and middle UV (180-315 nm)

- No penetrate, so no retinal hazard
- Photochemical damage to cornea

Laser-related hazards: summary of beam hazards

Spectral region	Eye	Skin	
Ultra-violet C (180 nm to 280 nm)	Photokeratitis	Erythema (sunburn) Accelerated skin ageing	
Ultra-violet B (280 nm to 315 nm)			
Ultra-violet A (315 nm to 400 nm)	Photochemical cataract	Pigment darkening Photosensitive reactions	
Visible (400 nm to 780 nm)	Photochemical & thermal retinal injury		
Infra-red A (780 nm to 1400 nm)	Cataract, retinal burn		Skin burn
Infra-red B (1,4 µm to 3,0 µm)	Aqueous flare, cataract, corneal burn		
Infra-red C (3,0 µm to 1 mm)	Corneal burn only		

Examples of eye damage: ultrafast laser

Examples of eye damage: ultrafast laser

Examples of eye damage

Good vision

Cornea Damage
BAD

Retina Damage WORSE

Eye Hazards – "natural"

Eye basic parameters:

- Focal length ~25 mm
- Maximum size of iris 7 mm

Staring at the sun:

- 100 mW cm⁻², 10 mrad angle subtended
- Iris in full sun ~2 mm diameter
- Diameter of image on retina:

$$d_{retina} = 10 \times 10^{-3} \text{ radians} \times 25 \text{ mm} = 0.25 \text{ mm}$$

• Power into iris:

$$P_{iris} = 100 \text{ mW cm}^{-2} \times \pi (1 \text{ mm})^2 = 3 \text{ mW}$$

• Fluence:

$$F_{retina} = 3 \text{ mW} / \pi (.0125 \text{cm})^2 = 6 \text{ W cm}^{-2}$$

Eye Hazards – 1mW HeNe laser

Collimated, diffraction-limited spot, beam 2 mm diameter

• Eye is nearly diffraction-limited for d ≤ 2 mm

$$d_{retina} = 2\lambda f / \pi r = 2 x (633 x 10^{-7} cm) x 2.5 cm / \pi 0.1 cm = 10 \mu m$$

Fluence on retina:

$$F_{\text{retina}} = 1 \text{ mW} / (\pi 5 \text{ x } 10^{-4} \text{ cm})^2 = 1300 \text{ W cm}^{-2}$$

So staring into a 1mW He-Ne laser can result in about 200 times more fluence on your retina than staring at the sun

Outline

- What is a LASER?
- Summary of laser hazards
- Laser classifications
- Laser-related hazards
 - Non-beam hazards
 - Beam hazards
- Optical protection
 - Maximum permissible exposure, calculating requirements
 - Laser-protective spectacles
- Issues in practical laser safety
 - Particular hazards (Ti:sapphire)
 - Past incidents
 - Minimizing risk: practical rules and tips

- Single pulse laser beam
- Exposure duration is FWHM
- •Aversion response time ~ 0.25s
- Check reference for multiple pulse exposure

$$Cp = n^{-\frac{1}{4}}$$

Correction factor for multiple pulse exposure for visible and NIR laser

Radiant exposure [J/cm²]

Optical protection: maximum permissible exposure

From graph, $\sim 0.5 \times 10^{-6} \, \text{J cm}^{-2} \, @ \, 10^{-5} \, \text{sec}$

- 7 mm iris diameter = 0.385 cm²
- Pulse energy limit ~0.2 μJ
 - $= 2 \mu W @ 10 Hz$
 - = 0.2 mW @ 1 kHz
 - $\sim 10^{-4}$ to 10^{-6} of full-beam energy

Modelocked ti:sapphire laser ~ 5 nJ = 0.005 μ J /pulse

- Treat as CW laser ~ 0.5 W output power
- 1 sec exposure $\sim 1.5 \times 10^{-3} \, \text{J cm}^{-2}$; 1.5 x 10⁻³ W cm⁻²
- 2 mm beam diameter -> 0.6 mW beam

Single pulse of an attenuated ps/fs laser is enough to cause damage

Optical protection: optical density

"Optical density" refers to transmission on log scale e.g. OD 3 means 10⁻³ transmission

Required OD:

$$OD_{req} = log_{10} \{ laser energy (power) / MPE \}$$

Example: CW Ti:sapphire laser

$$OD_{req} = log_{10} \{ 500 \text{ mW} / 0.6 \text{ mW} \} = 3$$

100 mJ Ti:sapphire

$$OD_{req} = Iog_{10} \{ 0.1 \text{ J} / 0.2 \mu\text{W} \} = 5.7$$

2J ti:sapphire

$$OD_{reg} = log_{10} \{ 2 J / 0.2 \mu W \} = 7$$

If beam is larger than 7 mm dia, effective pulse energy can be reduced

Optical protection: suitable eyewear

Example 1

Orange Glasses (OD 7)

- 5-18 W Verdi (532 nm)
- ~10W Argon laser (488 nm)
- pulsed frequency doubled Nd:YAG (532 nm)
- •Note:
- usable
- fit over glasses
- OD range written on side

Optical protection: suitable eyewear

Example 2

Amber Glasses

- Ti:sapphire (750-980 nm) = **(OD 7)**
- Eximer lasers (190-400) = **(OD 6)**

OTHER EYE PROTECTION

AVAILABLE – FIND THE

APPROPRIATE TYPE FOR YOUR

LASER

Optical protection: hazard evaluation and nominal hazard zone

- EVERY laser operator (from supervisor to new students) should understand the risk of working with high-power and ultrashort laser pulses
- Evaluate the dangers in your lab reflecting surfaces, exposed beams

Nominal Hazard Zone:

- area where caution is required
- can be entire lab
- ideal: all lasers are class 1, because they are encapsulated
- reality: unlikely in experimental physics labs

Optical protection: hazard evaluation and nominal hazard zone

- EVERY laser operator (from supervisor to new students) should understand the risk of working with high-power and ultrashort laser pulses
- Evaluate the dangers in your lab reflecting surfaces, exposed beams

Nominal Hazard Zone:

- area where caution is required
- can be entire lab
- ideal: all lasers are class 1, because they are encapsulated
- reality: unlikely in experimental physics labs

Optical protection: interlocks and warning signs

- Interlocks are automatic mechanism to shut down the laser when the nominal hazard zone is invaded
- Interlocks are often simply shutters so as not to disturb the lasing action
- Ensure all interlocks are working correctly
- Do not override interlocks
- The best practice for avoiding interlocks is to

Each laser lab needs a sign, which is

- clearly posted outside all lab entrances
- especially if the entire lab is the NHZ
- warning signs must specify the laser type,
 operation characteristics and class

Optical protection: practical tips for laser operators

- REMOVE jewelry, especially watches and rings
- REMOVE any other reflective surfaces from body
 - (you don't need to be naked though!)
- Avoid using reflective tools in alignment
- most incidents occur during alignment
- Monitor every reflections from optics in the setup
- Close eyes when bowing through plane of laser table
- i.e. picking up a dropped tool
- Communicate with other lab operators, when performing high-risk tasks
- No one will think less of you for insisting that laser safety goggles are warn at all times they will however hold a grudge if you blind them

Summary

- Lasers can be hazardous
- Know the safety guidelines for the equipment you are using
- If you don't know, don't guess
- Use common sense, but exercise caution
- Be safe!
 - don't exposure yourself, others or flammable object to the beam
 - wear eye protection
 - make sure sufficient warning/notification is in place
 - mind out for the non-beam hazards too

Q: Do the benefits of unsafe practices outweigh the risks?