Skip to main content

WVU Plasma and Space Physics Curriculum

Current Curriculum

Plasma Physics (PHYS 481)

This course is an introduction to plasma phenomena at the undergraduate level, described using single-particle, fluid, and kinetic models. Prerequisites are calculus-based introductory courses (PHYS 111 and PHYS 112) and junior-level electromagnetic theory (PHYS 334 as concurrent or prerequisite).

The text used is F. F. Chen, Introduction to Plasma Physics and Controlled Fusion Volume 1. Plasma Physics (Plenum Press, New York, 1984)

Principles of Plasma Physics (PHYS 781)

This course is a survey of plasma phenomena, described using single-particle, fluid and kinetic models. Prerequisite is a graduate-level course on electromagnetic theory (may be concurrent).

The text used is R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics (Institute of Physics Publishing, Bristol, 1995)

Computer Simulation of Plasma (PHYS 782)

This advanced course focuses on using plasma simulation to develop and refine one's physical understanding and intuition of phenomena encountered in plasma physics research. The course includes projects that involve actual simulating. Prerequisite is a graduate-level course on electromagnetic theory (may be concurrent) and PHYS 481 or PHYS 781.

The text used is C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (Adam Hilger, New York, 1991)

Advanced Kinetic Theory of Plasmas (PHYS 783)

This course focuses on advanced applications of kinetic theory to the study of plasmas and emphasizes the kinetic treatment of plasma waves. It covers the Vlasov equation, quasilinear theory, nonlinear phenomena, plasma waves and instabilities. Landau damping and finite-Larmor-radius effects. Prerequisites are PHYS 481 (Intro Plasma) & PHYS 631 (Graduate Classical 
Mechanics) & PHYS 634 (Graduate Electricity & Magnetism).

The typically recommended text used is P. M. Bellan, Fundamentals of Plasma Physics (Cambridge University Press, 2008)

Advanced Magnetohydrodynamic Theory of Plasmas (PHYS 784)

Ideal Magnetohydrodynamics (MHD) represents the simplest self-consistent model describing the macroscopic equilibrium and stability of plasma. This advanced course provides an in-depth introduction to this relatively mature theory within the field of plasma physics. Analytic theory is emphasized to develop a physical understanding of the ideal MHD model, to describe the equilibrium of various magnetic geometries, and to evaluate the stability properties of ideal MHD equilibria. Prerequisites are PHYS 481 (Intro Plasma) & PHYS 631

(Graduate Classical 
Mechanics) & PHYS 634 (Graduate Electricity & Magnetism).
Potential texts used are Arnab Rai Choudhuri The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (Cambridge University Press, 1998);  J. P. Friedburg Ideal Magnetohydrodynamics (Plenum Press, New York, 1987);  Ortolani and Schnack, Magnetohydrodynamics of Plasma Relaxation (World Scientific Publishing Co. Pte. Ltd., New Jersey, 1993)

Special Topics Courses That Have Been Offered

  • Sounding Rocket Payload Development (undergrad) (PHYS 493S)
  • Special Topics: Partially Ionized Plasma (PHYS 793B)
  • Special Topics: Solar and Space Physics (PHYS 793A)
  • Special Topics: Plasma Diagnostics (Phys 593C)